skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nasibova, Leyla"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The industrial importance of the CC double bond difunctionalization in vegetable oils/fatty acid chains motivates computational studies aimed at helping to improve experimental protocols. The CC double bond epoxidation is studied with hydrogen peroxide, peracetic acid (CH3CO3H), and performic acid (HCO3H) oxidizing agents. The epoxide ring‐opening mechanism is calculated in the presence of ZnCl2, NiCl2, and FeCl2Lewis acidic catalysts. Computations show that H2O2(∆G= 39 kcal/mol,TS1HP) is not an effective oxidizing agent compared to CH3CO3H (∆G= 29.8 kcal/mol,TS1PA) and HCO3H (∆G= 26.7 kcal/mol,TS1PF). The FeCl2(∆G= 14.7 kcal/mol,TS1FC) coordination to the epoxide oxygen facilitates the ring‐opening via lower energy barriers compared to the ZnCl2(∆G= 19.5 kcal/mol,TS1ZC) and NiCl2(∆G= 29.4 kcal/mol,TS1NC) coordination. ZnCl2was frequently utilized as a catalyst in laboratory‐scale procedures. The energetic span model identifies the FeCl2(FC) catalytic cycle as the best option for the epoxide ring‐opening. 
    more » « less